invertible matrix

Noun

This text is extracted from the Wiktionary and it is available under the CC BY-SA 3.0 license | Terms and conditions | Privacy policy 0.003

Noun

**invertible matrix**

- (
*linear algebra*) An*n×n*square matrix for which some other such matrix exists such that when they are multiplied by each other (in either order), the result is the*n×n*identity matrix.**1975**[Prentice-Hall], Kenneth Hoffman,*Analysis in Euclidean Space*, Dover, 2007, page 65 ↗,- It says that, if
*A*is a singular matrix, then every neighborhood of*A*contains an**invertible matrix**. In other words, if*A*is singular, we can perturb*A*just a little and obtain an**invertible matrix**.

- It says that, if
**1997**, Bernard L. Johnston, Fred Richman,*Numbers and Symmetry: An Introduction to Algebra*, CRC Press, page 199 ↗,- There are certain very simple
**invertible matrices**, and every**invertible matrix**over a field can be built up out of them.

- There are certain very simple
**2013**, Mahya Ghandehari, Aizhan Syzdykova, Keith F. Taylor,*A four dimensional continuous wavelet transform*, Azita Mayeli (editor),*Commutative and Noncommutative Harmonic Analysis and Applications*, American Mathematical Society, page 123 ↗,- The space of real square matrices of fixed size is a vector space whose dimension is a perfect square and the
**invertible matrices**constitute a dense open subset of this vector space.

- The space of real square matrices of fixed size is a vector space whose dimension is a perfect square and the

- Italian: matrice invertibile

This text is extracted from the Wiktionary and it is available under the CC BY-SA 3.0 license | Terms and conditions | Privacy policy 0.003